您现在的位置:首页  师资队伍  教授
张金宝

姓名:张金宝

职称:教授,博士生导师

电话:0592-

传真:

邮箱:jinbao.zhang@xmu.edu.cn

个人简历

张金宝教授,理学博士,博士生导师,南强青年拔尖人才。现任职于厦门大学材料学院。

教育经历:

2006.9-2010.7        中南大学化学化工学院,应用化学专业,学士

2010.9-2012.7        中南大学化学化工学院,功能材料研究所,硕士

2012.9-2016.10       瑞典乌普萨拉大学化学系,物理化学专业,博士

工作经历:

2016.10-2016.12     瑞典乌普萨拉大学化学系,博士后

2017.1-2018.1       澳大利亚蒙纳士大学材料系,博士后

2018.1-2019.11      美国斯坦福大学(Stanford)材料科学与工程系,博士后

2019.11-至今           厦门大学,教授,博士生导师


研究领域

长期致力于开发新一代太阳能电池材料以及光伏器件物理方面的研究,包含设计新型光电材料、制备高效器件、表征电子动力学的一体化研究。内容涉及:

1、发展新型电化学方法可控合成导电聚合物,并用于高效固态染料敏化太阳能电池。

2、新型、低成本、高效的有机半导体空穴传输材料的设计、开发、特性表征以及在光电器件中的应用。

3、太阳能电池器件中界面的功能化处理、化学修饰以及电子动力学控制。

4、低成本喷涂技术用于大面积功能材料薄膜的制备。


主要科研成果

在国际主流期刊上发表论文40多篇。SCI引用1600多次,H因子23。受邀撰写英文学术专著部分章节。多篇论文被Energy Environment Science、Chem. Comm. ChemPhysChem等选作封面。曾任美国斯坦福大学Knut and Alice Wallenberg研究员, 目前任清华大学节能与安全国家重点实验室的客座研究员(兼职), 任 PLOS ONE期刊学术编辑、International Journal of Electrochemistry期刊编委、International Journal of Materials Science and Applications期刊编委、受邀为WILEY旗下期刊 Advances of Polymer Technology 的客座编辑,也受邀为斯坦福大学华人学者年会特邀报告嘉宾。曾受邀德国Academy出版社,澳大利亚化学学会及澳大利亚光伏会议等书籍/论文Editor。长期被邀请为核心期刊的审稿人,包括Advanced Energy Materials, ACS Nano, ACS Applied Materials Interfaces, Nano Energy, ChemSusChem,等。


课题组招聘需求

课题组长期招聘博士后、研究助理、助理教授、副教授。欢迎报考2020级博士/硕士研究生(材料科学与工程/材料与化工),可随时发送简历至jinbao.zhang@xmu.edu.cn 或 jinbaocsu@hotmail.com。


主要代表学术论著与论文

43. Hole Transport Material based on Modified N-Annulated Perylene for Efficient and Stable Perovskite Solar Cells, Solar Energy, 2019, just accepted

42. Rapid Aqueous Spray Fabrication of Robust NiO: A Simple and Scalable Platform for Efficient Perovskite Solar Cells, Advanced Energy Materials, 2019, just accepted

41.  Electrochemically Polymerized Poly (3, 4-phenylenedioxythiophene) as Efficient and Transparent Counter Electrode for Dye Sensitized Solar Cells, Electrochemica Acta, 2019, 300, 482

40. Chemical Dopants Engineering in Hole Transport Layer for Efficient Perovskite Solar Cells: A New Insight into the Interfacial Recombination, ACS Nano, 2018, 12, 10452 

39. 4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability, ACS Energy Letter, 2018, 3, 1677 

38. Synthesis of spiro[dibenzo[c,h]xanthene-7,9' fluorene]- based dopant-free hole-transport materials for perovskite solar cells, 2018, Chem. Comm. 2018, 54, 9571-9574 

37. The Importance of Pendant Groups on Triphenylamine-based Hole Transport Materials for obtaining Perovskite Solar Cells with over 20% Efficiency, Advanced Energy Materials, 2018, 8, 1701209 

36. Al2O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells, ChemSusChem, 2017, 10, 3810-3817 

35. Incorporation of counter ions in the molecules: New strategy to develop dopant free hole transport material for perovskite solar cells, Advanced Energy Materials, 2017, 7, 1602736 

34. Tailor-making of Low-cost Spiro[fluorene-9,9′-xanthene] (SFX)-based 3D Oligomers towards 20.8% Efficiency Perovskite Solar Cells, Chem, 2017, 2, 676-687 

33. The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming Spiro -OMeTAD in Perovskite Solar Cells, Advanced Energy Materials, 2016, 1601062

32. A strategy to boost the efficiency for mixed-ion perovskite solar cells: Changing geometry of hole transporting materials. ACS Nano, 2016, 10, 6816–6825 

31. Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non-Spiro Hole Transporting Materials for High-efficiency Mixed-Ion Perovskite Solar Cells. Advanced Energy Materials, 2016, 1502536

30. Facile Synthesis of Hole Transport Materials for Highly Efficient Perovskite Solar Cells and Solid-State Dye-sensitized Solar Cell, Nano Energy, 2016, 26, 108-113 

29. Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material, Nano Energy, 2016, 19, 455 

28. Blue-Coloured Solid-State Dye Sensitized Solar Cells: Enhanced Charge Collection By Using Photo-electrochemically Generated Conducting Polymer Hole Conductor, ChemPhysChem, 2016, 7,1441-1445 

27. The effect of mesoporous particle size on the performance of solid state dye sensitized solar cells based on photoelectrochemically polymerized PEDOT as hole conductor. Electrochimica Acta, 2016, 210, 21-30 

26. Photo-electro-chemical  Polymerization of EDOT for Solid State Dye Sensitized Solar Cells: Role of Dye and Solvent, Electrochimica Acta, 2015, 179, 220-227 

25. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Poly(3,4-ethylenedioxythiophene) in Solid-State Dye-Sensitized Solar Cells: Comparison of in-situ Photoelectrochemical Polymerization in Micellar and Organic Media, Analytical Chemistry, 2015, 87, 3942–3948 

24. New approach for preparation of efficient solid state dye sensitized solar cells by photo-electrochemical polymerization in aqueous solution, J. Phys. Chem. Lett., 2014, 4, 4026–4031.  

23. Poly(3,4-ethylenedioxythiophene) Hole-Transporting Material Generated by Photoelectrochemical Polymerization in Aqueous and Organic Medium for All-Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2014, 118, 16591–16601 

22. Solid-State Dye-Sensitized Solar Cells Based on Poly (3,4-ethylenedioxypyrrole) and Metal-Free Organic Dyes, ChemPhysChem, 2014, 15, 1043-1047 

21. High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor, Energy Environmental Science, 2015, 8, 2634-2637 

20. 4‐Tert‐butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells, Advanced Energy Materials, 2017, 7, 1700683. 

19. High luminance of hybrid perovskite light-emitting diodes: perovskite nanocrystals with organic-inorganic mixed cations, 2016, Advanced Materials, 2016, 29, 1606405  

18. Ambient air processed mixed-ion perovskite for high efficiency solar cells, 2016, J. Mater. Chem. A, 2016,4, 16536-16545

17. Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401185  

16. Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells, Advanced Materials, 2014, 26, 6629 

15. All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites, Advance Functional Materials, 2016, 26, 4595-4600 

14. Incorporation of a fluorophenylene spacer into a highly efficient organic dye for solid-state dye-sensitized solar cells. J. Photochemistry and Photobiology A: Chemistry, 2016, 328, 59-65 

13. Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor, J. solid-state electrochem., 2015, 19, 3139-3144

12. Dye-sensitized Solar Cells: New Approaches with Organic Solid-state Hole Conductors, CHIMIA International Journal for Chemistry, 2015, 69, 41-51 

11. Codoping induced rhombus-shaped Co3O4 nanosheets as active electrode material for oxygen evolution, ACS Applied Materials & Interfaces, 2015, 7, 21745–21750 

10. The combination of a new organic D-π-A dye with different organic hole-transport materials for efficient solid state dye-sensitized solar cells, J. Mater. Chem. A, 2015, 3, 4420-4427 

9. New Covalently Linked Dye-Hole Transport Material for better charge transfer in Solid-State Dye Sensitized Solar Cells, Electrochimica Acta, 2018, 269, 163-171 

8. Design, synthesis and application of π-conjugated, non-spiro molecular alternatives as hole-transport materials for highly efficient dye-sensitized solar cells and perovskite solar cells, J. Power Sources, 2017, 344, 11 

7. A Novel Blue Colored Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-based Electrolytes and by Co-sensitization.  ACS Applied Material & Interfaces, 2016, 8, 32797 

6. Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries, Journal of Solid State Electrochemistry, 2012, 16, 767 

5. Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell, Acta Phys. Chim. Sin. 2012, 28, 355-360 

4. Electrochemical Synthesis of Dimethyl Carbonate with Carbon Dioxide in 1-Butyl-3-Methylimidazoliumtetrafluoborate on Indium Electrode, Int. J. Electrochem. Sci., 2012, 7, 4381 – 4387

3. Electrocatalytic Activity of Nanoporous Perovskite La1-xCaxCoO3 Towards Hydrogen Peroxide Reduction in Alkaline Medium, Int. J. Electrochem. Sci., 2012, 7, 338- 344

2. Effect of rapid quenching in magnetic field on the microstructures and electrochemical performances of AB5-type alloys, Advanced Materials Research, 2012, 1589-1596

Book chapter

1.Solid state dye sensitized solar cells, 2018 (chapter in book “Molecular Devices for Solar Energy Conversion and Storage”), Springer Press, 2018.

版权所有 © 厦门大学材料学院