您现在的位置:首页  师资队伍  副教授
姜源

姓名:姜源

职称:副教授、博士生导师

电话:0592-2182775

传真:0592-2182775

邮箱:jy@xmu.edu.cn

个人简历

教育经历:

2010年德国波茨坦大学(马克思–普朗克研究学会–胶体与界面研究所,胶体化学部),理学博士;

指导教授:Markus Antonietti及Helmut Cölfen

2005年南京大学,化学化工学院(配位化学国家重点实验室),理学硕士;

指导教授:徐正

2002年山东大学,化学与化工学院,理学学士


研究经历:

2013年起厦门大学材料学院生物材料系,副教授;

2011–2012年麻省理工学院,化工系,博士后;

合作教授:Allan S. Myerson及Bernhardt L. Trout

研究领域  

实验室主要研究方向为仿生材料化学,运用结晶工程、纳米组装、高分子加工等手段制备仿生材料,优化性能表现,理解形成机制;实验室也启动了海洋碳汇材料研究,发展碳汇材料系统,理解碳汇界面机制。

1、仿生合成。学习生物矿化的表界面控制策略构建复合材料,精准合成仿生结构,调控并优化性能表现,揭示多尺度界面机制;

2、海洋碳汇材料。聚焦海洋碳汇中的矿物-海水界面基础科学问题,深入探究矿物溶解微观机制,系统发展新型材料系统用于碱化海水及对抗海洋酸化;

3、纳米组装。运用低维纳米颗粒界面组装手段合成复杂结构,并耦合先进材料加工手段(如微流控、增材制造)构建结构功能一体化导电聚合物多孔材料。

4、复合木材。采用环境友好的方法解构并重构木材,进一步利用仿生及纳米技术制备高性能、多功能复合木材。

主持科研项目

主持科研项目:

4、国家自然科学基金面上项目,“发展耗散型反应-扩散系统构筑类珍珠层矿物多级有序结构”,22075235,2021–01至2024–12,63万,主持;

3、国家自然科学基金面上项目,“棱柱状碳酸钙仿生薄膜的晶种外延矿化诱导构筑及其应用”,21875193,2019–01至2022–12,68万,主持;

2、福建省自然科学基金面上项目,“运用生物仿生路线制备纳米药物”,2014J01207, 2014–01至2016–12,3万,结题 ;

1、国家自然科学基金青年项目,“非经典结晶路线制备新颖的纳米药物超结构”,21303144,2014–01至2016–12,26万,结题。

主要代表学术论著与论文

ORCID ID: https://orcid.org/0000-0002-1669-8023

28. Bioinspired Compartmentalization Strategy for Coating Polymers with Self-Organized Prismatic Films. Chem. Mater. 2021, 33, 9240–9251.

27. Spontaneous Adsorption of Graphene Oxide on Multiple Polymeric Surfaces. Langmuir 2021, 37, 8829–8839.

26. Hydrogel-Mediated Mineralization Generates Oriented Crystalline Films Comprising Granular-Rhombohedral Heterogeneous Structures. Langmuir 2021, 37, 7741–7750.

25. Continuous and Patterned Conducting Polymer Coatings on Diverse Substrates: Rapid Fabrication by Oxidant-Intermediated Surface Polymerization and Application in Flexible Devices. ACS Appl. Mater. Interfaces 2021, 13, 5583–5591.

24. Integration of PEGylated Polyaniline Nanocoatings with Multiple Plastic Substrates Generates Comparable Antifouling Performance. Langmuir 2020, 36, 9114–9123.

23. Seeded Mineralization in Silk Fibroin Hydrogel Matrices Leads to Continuous Rhombohedral CaCO3 Films. Crystals 2020, 10, 166 (Invited).

22. Nanocombing Effect Leads to Nanowire–Based, in–Plane, Uniaxial Thin Films. ACS Nano 2018, 12, 12701–12712.

21. Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO3 Thin Films. Langmuir 2018, 34, 11126–11138.

20. Correlations of crystal shape and lateral orientation in bioinspired CaCO3 mineralization. CrystEngComm 2018, 20, 5241–5248.

19. A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant–Templating Preparation and Supercapacitor Application. ACS Nano 2018, 12, 5888–5894.

18. Seeded Mineralization Leads to Hierarchical CaCO3 Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir 2018, 34, 2942–2951.

17. Total morphosynthesis of biomimetic prismatic–type CaCO3 thin films. Nat. Commun., 2017, 8, 1398.

16. Growth of Organic Crystals via Attachment and Transformation of Nanoscopic Precursors. Nat. Commun. 2017, 8, 15933.

15. Design of Heterogeneous Nuclei Composed of Uniaxial Cellulose Nanocrystal Assemblies for Epitaxial Growth of Poly(ε–caprolactone). Macromolecules 2017, 50, 3355–3364.

14. A Green Approach to Dual–Drug Nanoformulations with Targeting and Synergistic Effects for Cancer Therapy. Drug Deliv. 2017, 24, 51–60.

13. Design of Heterogeneous Nuclei for Lateral Crystallization via Uniaxial Assembly of Cellulose Nanocrystals. Cryst. Growth Des. 2016, 16, 4620–4626.

12. Fabrication of a uniaxial cellulose nanocrystal thin film for coassembly of single–walled carbon nanotubes. RSC Adv. 2016, 6, 39396–39400.

11. Direct Growth of Microspheres on Amorphous Precursor Domains in Polymer–Controlled Crystallization of Indomethacin. Cryst. Growth Des. 2016, 16, 1428–1434.

10. Integration of An Anti–Tumor Drug into Nanocrystalline Assemblies for Sustained Drug Release. Chem. Sci. 2015, 6, 1650–1654.

9. Microdomain Transformation in Mosaic Mesocrystal Thin Films. Adv. Funct. Mater. 2013, 23, 1547–1555.

8. The Existence Region and Composition of a Polymer–Induced Liquid Precursor Phase to DL–Glutamic Acid Crystals. Phys. Chem. Chem. Phys. 2012, 14, 914–919.

7. Hierarchical DL–Glutamic Acid Microspheres from Polymer–Induced Liquid Precursors. Cryst. Growth Des. 2011, 11, 3243–3249.

6. Preparation of Hierarchical Mesocrystalline DL–Lysine·HCl–Poly(acrylic acid) Hybrid Thin Films. Adv. Mater. 2011, 23, 3548–3552.

5. Two Growth Modes of Metal Oxide in the Colloidal Crystal Template Leading to the Formation of Two Different Macroporous Materials. Chem. Mater. 2007, 19, 5424–5430.

4. Fabrication of Monodisperse Colloidal Array with Confinement Effects. Chem. Commun. 2006, 75–77.

3. An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method. Adv. Mater. 2006, 18, 2161–2164.

2. Preparation of an Ordered Array of Poly(N–vinylcarbazol) and Poly(N–vinylcarbazol)–Fullerene Nanotubes. Chin. J. Inorg. Chem. 2005, 21, 1389–1391.

1. The Baylis–Hillman Reactions of Aldehydes with Methyl Vinyl Ketone in the Presence of Imidazole, Binol and Silica Gel. Chem. Res., Synop. 2003, 564–566.


版权所有 © 厦门大学材料学院