(1)Xu, W.; Ji, M.; Chen, Y.; Zheng, H.; Wang, L.; Peng, D.-L. Nickel colloidal superparticles: microemulsion-based self-assembly preparation and their transition from room-temperature superparamagnetism to ferromagnetism, J. Phys. Chem. C 2021, 125, 5880−5889.
(2)Li, X.; Huang, X.; Chen, Y.; Mei, J.; Xu, W.; Wang, L.; Peng, D.-L. Monodisperse core-shell Li4Ti5O12@C submicron particles as high-rate anode materials for lithium-ion batteries, Electrochimica Acta 2021, 390, 138874.
(3)Fang, Y.; Zeng, X.; Chen, Y.; Ji, M.; Zheng, H.; Xu W.; Peng, D.-L. Cu@Ni core–shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films, Nanotechnol. 2020, 31, 355601.
(4)Liu, Y.; Sun, G.; Chen, Y.; Xu, W.; Xu, J.; Wang, L.; Peng, D.-L. Synthesis and magnetic properties of colloidal superparticles assembled by Mn3O4 octahedral nanocrystals, J. Magn. Magn. Mater. 2020, 150, 166890.
(5)Deng, B.; Chen, Y.; Wu, P.; Han, J.; Li, Y.; Zheng, H.; Xie, Q.; Wang, L.; Peng, D.-L. Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries, J. Power Sources 2019, 418, 122–129.
(6)Zeng, D.; Zhou, T.; Ong, W.-J.; Wu, M.; Duan, X.; Xu, W.; Chen, Y.; Zhu, Y-A.; Peng, D.-L. Sub‑5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g‑C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light, ACS Appl. Mater. Interfaces 2019, 11, 5651−5660.
(7)Zeng, D.; Wu, P.; Ong, W.-J.; Tang, B.; Wu, M.; Zheng, H.; Chen, Y.; Peng, D.-L. Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Appl. Catal. B Environ. 2018, 233, 26–34.
(8)Zeng, D.; Xu, W.; Ong, W.-J.; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D.-L. Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces, Appl. Catal. B Environ. 2018, 221, 47–55.
(9)Zeng, D.; Xiao, L.; Ong, W.-J.; Wu, P.; Zheng, H.; Chen, Y.; Peng, D.-L. Hierarchical ZnIn2S4/MoSe2 nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light, ChemSusChem 2017, 10, 4624–4631.
(10)Zeng, D.; Ong, W.-J.; Zheng, H.; Wu, M.; Chen, Y.; Peng D.-L.; Han M.-Y., Ni12P5 nanoparticles embedded into porous g-C3N4 nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H2 production under visible light, J. Mater. Chem. A, 2017, 5, 16171–16178.
(11)Guo, W.; Chen, Y.; Wang, L.; Xu, J.; Zeng, D.; Peng, D.-L. Colloidal synthesis of MoSe2 nanonetworks and nanoflowers with efficient electrocatalytic hydrogen-evolution activity. Electrochimica Acta 2017, 231, 69–76.
(12)Liu, X.; Wang, L.; Ma, Y.; Zheng, H.; Lin, L.; Zhang, Q.; Chen, Y.; Qiu, Y.; Peng, D.-L. Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-Band, ACS Appl. Mater. Interface, 2017, 9, 7601–7610.
(13)Zeng, D.; Qiu, Y.; Chen, Y.; Zhang, Q.; Liu, X.; Peng, D.-L. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity. J. Nanopart. Res. 2017, 19, 138.
(14)Qi, Q.; Chen, Y.; Wang, L.; Zeng D.; Peng D.-L. Phase-controlled synthesis and magnetic properties of cubic and hexagonal CoO nanocrystals. Nanotechnology 2016, 27, 455602.
(15)Zeng, D.; Gong, P.; Chen, Y.; Zhang, Q.; Xie Q.; Peng, D.-L. Colloidal synthesis of Cu–ZnO and Cu@CuNi–ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties. Nanoscale 2016, 8, 11602–11610.
(16)Wang, Z.; Chen, Y.; Zeng, D.; Zhang Q.; Peng, D.-L. Solution synthesis of triangular and hexagonal nickel nanosheets with the aid of tungsten hexacarbonyl. CrystEngComm, 2016, 18, 1295–1301.
(17)Guo, H.; Jin, J.; Chen, Y.; Liu, X.; Zeng, D.; Wang, L.; Peng, D.-L. Controllable synthesis of Cu–Ni core–shell nanoparticles and nanowires with tunable magnetic properties. Chem. Comm. 2016, 52, 6918–6921.
(18)Lu, A.; Zhang, X.; Chen, Y.; Xie, Q.; Qi, Q.; Ma, Y.; Peng, D.-L. Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J. Power Sources 2015, 295, 329–335.
(19)Zeng, D.; Chen, Y.; Wang, Z.; Wang, J.; Xie, Q.; Peng, D.-L. Synthesis of Ni–Au–ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity. Nanoscale 2015, 7, 11371–11378.
(20)Zeng, D.; Chen, Y.; Peng, J.; Xie Q.; Peng, D.-L. Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals. Nanotechnology 2015, 26, 415602.
(21)Ji, N.; Chen, Y.; Gong, P.; Cao, K.; Peng, D.-L. Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices. Colloid Surface A 2015, 480, 11–18.
(22)Chen, Y.; Zeng, D.; Cortie, M. B.; Dowd, A.; Guo, H.; Wang, J.; Peng, D.-L. Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications. Small 2015, 11, 1460–1469.
(23)Guo, H.; Liu, X.; Bai, C.; Chen, Y.; Wang, L.; Zheng, M.; Dong, Q.; Peng, D.-L. Evolution of component distribution and nanoporosity in CuPt nanotubes – effect on electrocatalysis of oxygen reduction reaction, ChemSusChem 2015, 8, 486–494.
(24)Lu, A.; Chen, Y.; Li, H.; Dowd, A.; Cortie, M. B.; Xie, Q.; Guo, H.; Qi, Q.; Peng, D.-L. Magnetic metal phosphide nanorods as effective hydrogen-evolution electrocatalysts. Int. J. Hydrogen Energy 2014, 39, 18919–18928.
(25)Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 2014, 118, 9801–9808.
(26)Lu, A.; Chen, Y.; Zeng, D.; Li, M.; Xie, Q.; Zhang, X.; Peng, D.-L. Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods. Nanotechnology 2014, 25, 035707.
(27)Chen, Y.; Zeng, D.; Zhang, K.; Lu, A.; Wang, L.; Peng, D.-L. Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties. Nanoscale 2014, 6, 874–881.
(28)Zeng, D.; Chen, Y.; Lu, A.; Li, M.; Guo, H.; Wang, J.; Peng, D.-L. Injection synthesis of Ni-Cu@Au-Cu nanowires with tunable magnetic and plasmonic properties. Chem. Commun. 2013, 49, 11545–11547.
(29)Guo, H.; Chen, Y.; Ping, H.; Jin J.; Peng, D.-L. Facile Synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chlorine ions. Nanoscale 2013, 5, 2394–2402.
(30)Guo, H.; Lin,N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; Peng, D.-L. Copper nanowires as fully transparent, conductive electrodes. Sci. Rep. 2013, 3, 2323.
(31)Liu, X.; Chen, Y.; Wang, L.; Peng, D.-L. Transition from paramagnetism to ferromagnetism in HfO2 nanorods. J. Appl. Phys. 2013, 113, 076102.
(32)Lu, A.; Chen, Y.; Jin, J.; Yue, G.-H.; Peng, D.-L. CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride. J. Power Sources 2012, 220, 391–398.
(33)Guo, H.; Chen, Y.; Ping, H.; Wang, L.; Peng, D.-L. One-pot synthesis of hexagonal and triangular nickel–copper alloy nanoplates and their magnetic and catalytic properties. J. Mater. Chem. 2012, 22, 8336–8344.
(34)She, H.; Chen, Y.; Chen, X.; Zhang, K.; Wang, Z.; Peng, D.-L. Structure, optical and magnetic properties of Ni@Au and Au@Ni nanoparticles synthesized via non-aqueous approaches. J. Mater. Chem. 2012, 22, 2757–2765.
(35)Guo, H.; Chen, Y.; Chen, X.; Wen, R.; Yue, G.-H.; Peng, D.-L. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen. Nanotechnology 2011, 22, 195604.
(36)Chen, Y.; She, H.; Luo, X.; Yue, G.-H.; Peng, D.-L., Solution-phase synthesis of nickel phosphide single-crystalline nanowires. J. Crystal Growth 2009, 311, 1229–1233.
(37)Chen, Y.; Peng, D-L; Lin, D.; Luo, X. Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 2007, 18, 505703.